

New techniques for radar altimetry of sea ice and the polar oceans

Tom Armitage¹, Ron Kwok¹, Alejandro Egido^{2,3}, Walter Smith²

¹Jet Propulsion Laboratory, California Institute of Technology, California, USA ²NOAA Laboratory for Satellite Altimetry

³Cooperative Institute for Climate & Satellites-Maryland, Earth System Science Interdisciplinary Center, University of Maryland

Summary

Radar altimetry is a <u>proven tool</u> for studying and monitoring the polar oceans (ice freeboard/thickness/volume & SSH)

But, here I will discuss...

- Investigating improving sea ice retrievals from SAR altimeters with 'fully-focused' processing
- 2. The SWOT mission, that offers to provide swath elevation measurements of ice freeboard/thickness and SSH

Fully-focused SAR altimetry

FFSAR: Introduction

- Accounts for the phaseevolution of scatterers
- Perform inter-burst coherent integration, potentially during the entire illumination time of a surface scatterer
- Can achieve along-track resolution of ~50cm

Figures: Egido & Smith (2017), "Fully Focused SAR Altimetry: Theory and Applications", IEEE TGRS, 55

FFSAR: Introduction

Delay/Doppler

Coherent processing over individual bursts

FFSAR: Introduction

Fully-focused

Coherent processing over many bursts

Get more effective looks at the surface

FFSAR: Why is it interesting for sea ice?

- Sea ice thickness uncertainty:
- ~50% snow loading
- ~40% freeboard measurement
 - > Sea level interpolation
 - > Sea level sampling
 - ➤ Noise
 - > Snow penetration
- FFSAR can potentially improve underlined contributions

FFSAR: Improved along-track sampling

FFSAR: Improved along-track sampling

26 March 2014

 Perform along-track comparison between ESA level-1b delay/Doppler data and FFSAR equivalent

Floe height anomalies

- ESA Level-1b
- 80Hz FFSAR
- 25km along-track statistics
 - Similar along-track standard deviation
 - More floes detected
 - Improvements in noise (\sqrt{N})

Sea level anomalies

- ESA Level-1b
- 80Hz FFSAR
- 25km along-track statistics
 - Similar along-track standard deviation
 - More floes detected
 - Improvements in noise (\sqrt{N})

FFSAR: Implications for potential CryoSat-FO

- Interleaved operation is better than 'burst' operation, especially for FFSAR processing
 - But more power+data*
 hungry (*power+data=money)
- Studies for CryoSat follow-on:
 - Inter-leaved vs. burst operation
 - FFSAR ground segment
 - FFSAR for ice sheets/SARIn

Image courtesy: Robert Cullen

Surface Water Ocean Topography mission sea ice retrievals

SWOT: Background

Launch: 2021

Inclination: 78°

21-day repeat

- Mission:
 - Determine ocean (sub-)
 mesoscale circulation at
 15km resolution
 - Measure terrestrial surface water storage and river discharge at sub-monthly to annual time scales

SWOT: Payload

15 December 2017

- Ka-band Radar Interferometer (KaRIn)
 - 35.75GHz central frequency
 - Generates 2 swaths of elevation 10-60km either side of nadir
 - Resolution: 2.5m along-track x
 10m (far-swath) to 70m (near-swath) across-track
- Poseidon-class nadir altimeter (Ku- & C-band)

Image: D. Esteban Fernandez, 2013, "SWOT Project Mission Performance and Error Budget", JPL D-79084

SWOT: Measurement

- Use phase difference of signal received by two antennas to estimate look angle
- Can be used to estimate the surface elevation h

SWOT: Sea ice challenges

Main questions

- 1. What are the near-nadir Ka-band backscattering properties of sea ice?
- 2. Given this, what is the expected performance over ice-covered oceans?

Image: Kwok (2014), "Declassified high-resolution visible imagery for Arctic sea ice investigations: An overview", RSE

SWOT: Sea ice backscatter

Available data:

 UAVSAR - Ka-band interferometric SAR

SWOT: Sea ice backscatter

Available data:

- UAVSAR Ka-band interferometric SAR
- Global Precipitation
 Measurement Ka-band
 precipitation radar

SWOT: Sea ice backscatter

Available data:

- UAVSAR Ka-band interferometric SAR
- Global Precipitation
 Measurement Ka-band
 precipitation radar
 - Gives Ka-band σ^0 over the range of SWOT look angles (gray)

SWOT: Simulator

- Adapt the SWOT Hydrology Simulator
 - Backscatter from leads similar to inland water(?)
- Requires:
 - An input DEM
 - Surface type mask
 - Backscatter profiles

<u>Coherent power</u>: bright area = open water; darker = sea ice

Surface classification

Height retrieval

Height retrieval

SWOT: Future work

- What are the likely observational limits for SWOT over sea ice?
 - Refine Ka-band backscatter estimates
 - Perform simulations over range of possible backscatter scenarios
- Sea ice feasibility acquisitions currently planned for Arctic Ocean

Thanks for listening!

